cutting-plane algorithm - определение. Что такое cutting-plane algorithm
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое cutting-plane algorithm - определение

OPTIMIZATION TECHNIQUE FOR SOLVING (MIXED) INTEGER LINEAR PROGRAMS
Cutting plane; Cutting plane method; Cutting-plane methods; Cutting-plane; Gomory cuts; Gomory cut
  • date=November 2019}}) inequality states that every tour must have at least two edges.

Sweep line algorithm         
  • Animation of [[Fortune's algorithm]], a sweep line technique for constructing [[Voronoi diagram]]s.
CLASS OF ALGORITHMS IN COMPUTATIONAL GEOMETRY THAT USES A CONCEPTUAL SWEEP LINE/SURFACE TO SOLVE VARIOUS PROBLEMS IN EUCLIDEAN SPACE
Sweepline; Sweep line; Sweepline algorithm; Plane sweep; Line sweep algorithm; Generalizations of the sweep line algorithm
In computational geometry, a sweep line algorithm or plane sweep algorithm is an algorithmic paradigm that uses a conceptual sweep line or sweep surface to solve various problems in Euclidean space. It is one of the key techniques in computational geometry.
Cutting-plane method         
In mathematical optimization, the cutting-plane method is any of a variety of optimization methods that iteratively refine a feasible set or objective function by means of linear inequalities, termed cuts. Such procedures are commonly used to find integer solutions to mixed integer linear programming (MILP) problems, as well as to solve general, not necessarily differentiable convex optimization problems.
Cutting Edge (recordings)         
SERIES OF ALBUMS
Cutting Edge 1; Cutting Edge 2; Cutting Edge 1 and 2; Cutting Edge 3; Cutting Edge Fore; Cutting Edge 3 and Fore
Cutting Edge is a series of recordings made by the British rock band Delirious?. The songs were originally written for a regular youth event, Cutting Edge, in the band's home town of Littlehampton.

Википедия

Cutting-plane method

In mathematical optimization, the cutting-plane method is any of a variety of optimization methods that iteratively refine a feasible set or objective function by means of linear inequalities, termed cuts. Such procedures are commonly used to find integer solutions to mixed integer linear programming (MILP) problems, as well as to solve general, not necessarily differentiable convex optimization problems. The use of cutting planes to solve MILP was introduced by Ralph E. Gomory.

Cutting plane methods for MILP work by solving a non-integer linear program, the linear relaxation of the given integer program. The theory of Linear Programming dictates that under mild assumptions (if the linear program has an optimal solution, and if the feasible region does not contain a line), one can always find an extreme point or a corner point that is optimal. The obtained optimum is tested for being an integer solution. If it is not, there is guaranteed to exist a linear inequality that separates the optimum from the convex hull of the true feasible set. Finding such an inequality is the separation problem, and such an inequality is a cut. A cut can be added to the relaxed linear program. Then, the current non-integer solution is no longer feasible to the relaxation. This process is repeated until an optimal integer solution is found.

Cutting-plane methods for general convex continuous optimization and variants are known under various names: Kelley's method, Kelley–Cheney–Goldstein method, and bundle methods. They are popularly used for non-differentiable convex minimization, where a convex objective function and its subgradient can be evaluated efficiently but usual gradient methods for differentiable optimization can not be used. This situation is most typical for the concave maximization of Lagrangian dual functions. Another common situation is the application of the Dantzig–Wolfe decomposition to a structured optimization problem in which formulations with an exponential number of variables are obtained. Generating these variables on demand by means of delayed column generation is identical to performing a cutting plane on the respective dual problem.